
Random distance distribution for spherical objects: general theory and applications to physics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 6557

(http://iopscience.iop.org/0305-4470/35/31/303)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/31
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 6557–6570 PII: S0305-4470(02)35311-3

Random distance distribution for spherical objects:
general theory and applications to physics

Shu-Ju Tu and Ephraim Fischbach

Department of Physics, Purdue University, West Lafayette, IN 47907, USA

E-mail: sjtu@physics.purdue.edu and ephraim@physics.purdue.edu

Received 27 March 2002
Published 26 July 2002
Online at stacks.iop.org/JPhysA/35/6557

Abstract
A formalism is presented for analytically obtaining the probability density
function, Pn(s), for the random distance s between two random points in an
n-dimensional spherical object of radius R. Our formalism allows Pn(s) to
be calculated for a spherical n-ball having an arbitrary volume density, and
reproduces the well-known results for the case of uniform density. The results
find applications in geometric probability, computational science, molecular
biological systems, statistical physics, astrophysics, condensed matter physics,
nuclear physics and elementary particle physics. As one application of these
results, we propose a new statistical method derived from our formalism to
study random number generators used in Monte Carlo simulations.

PACS numbers: 02.50Cw, 02.50.Ng, 02.70Uu, 02.70Rr, 05.10.Ln

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In two recent papers [1, 2], geometric probability techniques were developed to calculate
the functions P3(s) which describe the probability density of finding a random distance s

separating two random points distributed in a uniform sphere and in a uniform ellipsoid. As
discussed in [1–17], these results are of interest as tools in mathematical physics, and have
numerous applications in other fields as well. Specifically, it was demonstrated in [1–5] that
knowing the random distance distribution in a spherical object greatly facilitates the calculation
of self-energies for spherical matter distributions arising from electromagnetic, gravitational
or weak interactions.

As an example we calculate the total electrostatic energy W3 of a collection of Z charges
uniformly distributed within the same spherical volume of radius R. For illustrative purposes,
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we assume that Z is a large number. For each pair of charges the potential energy due to the
Coulomb interaction in Gaussian units is

V3 = e2

r12
= e2

|�r2 − �r1| (1)

where e is the elementary charge, �r1 (�r2) is the coordinate of the first (second) charge. The
total Coulomb energy W3 can then be expressed as

W3 = 1

2
ρ2

∫
r2

1 dr1

∫
sin θ1 dθ1

∫
dφ1

∫
r2

2 dr2

∫
sin θ2 dθ2

∫
1

r12
dφ2

= Z2

2
× 6

5

e2

R
(2)

where ρ = 3Ze/4πR3 (see [18]). We note that equation (2) requires evaluating a six-
dimensional integral, and using the addition theorem for spherical harmonics [19]

Pl(cos γ ) = 4π

2l + 1

l∑
m=−l

(−1)mY m
l (θ1, φ1)Y

−m
l (θ2, φ2). (3)

Alternatively, we can use the probability density function P3(s) [6] giving the random
distance distribution for a sphere with a uniform density to calculate W3. For a collection of
Z charges there are Z(Z − 1)/2 such pairs, and hence the total Coulomb energy W3 is

W3 = Z(Z − 1)

2

∫ 2R

0
P3(s)

e2

s
ds = Z(Z − 1)

2
× 6

5

e2

R

∼= Z2

2
× 6

5

e2

R
(4)

where

P3(s) = 3
s2

R3
− 9

4

s3

R4
+

3

16

s5

R6
. (5)

We note that by using geometric probability techniques we can simplify the expression for W3

from a six-dimensional non-trivial integral (2) to a one-dimensional elementary integral (4).
Generalizing to n-dimensions, a calculation of the electrostatic energy Wn for a collection of
Z charges uniformly distributed within the same n-dimensional spherical volume of radius R

can be greatly simplified by utilizing the n-dimensional random distance distribution. This
reduces the complexity of calculating Wn from a 2n-dimensional intractable integral involving
n-dimensional spherical harmonics to a simple one-dimensional integral.

The probability density function Pn(s) for the distribution of the random distance s

between two random points in a uniform spherical n-ball is well known. Hence the object of
the present paper is to generalize the results of [9–11] to the case of an arbitrarily non-uniform
density distribution by using a new method which we present below. Note that the sample
space Bn for the random points is a spherical n-ball of radius R defined as

Bn = {
(x1, x2, . . . , xn) ∈ Rn : x2

1 + x2
2 + · · · + x2

n � R2} (6)

where

Rn = {x : x = (x1, x2, . . . , xn)} (7)

represents n-dimensional Euclidean space.
To illustrate our formalism, we begin by deriving the probability density function (PDF)

for a spherical n-ball with a uniform density distribution, and compare our results with those
obtained earlier by other means [9–11]. We then extend this technique to a spherical n-ball
with an arbitrary density distribution, and this leads to a general-purpose master formula for
Pn(s) given in equation (39). The outline of this paper is as follows. In section 2 we present
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s

Figure 1. The locus of points in a circle separated by a vector �s = sx̂. For each random point �r1
in A1, there is a unique random point �r2 in A2 such that �s = �r2 − �r1.

our formalism and illustrate it by rederiving the well-known results for a circle and for a
sphere of uniform density. In section 3 we extend this formalism to the case of non-uniform
but spherically symmetric density. In section 4 we develop the formalism for the most general
case of an arbitrary density distribution. In section 5 we present some applications of our
results including a new proposed computational scheme for testing random number generators
(RNG) used in Monte Carlo simulations.

2. Uniform density distributions

In this section we illustrate our formalism by deriving the PDF for a circle of radius R having
a spatially uniform density characterized by a density function ρ, where ρ is an arbitrary
constant. For two points randomly sampled inside the circle located at �r1 and �r2 measured
from the centre, define a random vector �s = �r2 − �r1 and a random distance s = |�s|, where
0 � s � 2R. To simplify the discussion, we translate the centre of the circle to the origin so
that the equation for the circle is x2 +y2 = R2. It is sufficient to consider initially those vectors
�s which are aligned in the positive x̂ direction, since rotational symmetry can eventually be
used to extend our results to those vectors �s with arbitrary orientations. We begin by identifying
those pairs of points, �r1 and �r2, which satisfy �s = sx̂. One set of random points for �r1 is
located in A1 and the other set of random points for �r2 is located in A2 as shown in figure 1.
We observe that A2 is the overlap area between the original circle C1 and an identical circle
C2 whose centre is shifted from (0, 0) to (|�s|, 0) as shown in figure 2. Since the areas of A1

and A2 are equal, it follows that the probability density of finding a given s = |sx̂| in a circle
of uniform density is proportional to the area of A2:

∫ s
2

s−R

dx

∫ √
R2−(x−s)2

−
√

R2−(x−s)2

dy +
∫ R

s
2

dx

∫ √
R2−x2

−√
R2−x2

dy. (8)

Using rotational symmetry, this result can be applied to any orientation of �s, where
0 � φ � 2π , and hence the probability density P2(s) for a circle of uniform density can
be factorized as

P2(s) = 2πs × f (s) (9)
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Figure 2. The probability density that two random points are separated by a random distance |sx̂|
in a circle of radius R is proportional to the shaded area given by the overlap of C1 and C2, where
C1 is x2 + y2 = R2 and C2 is (x − s)2 + y2 = R2.

where f (s) is a function to be determined and is proportional to expression (8). If we impose
the normalization requirement∫ 2R

0
P2(s) ds = 1 (10)

we then have

P2(s) =
2πs

∫ R
s
2

dx
∫ √

R2−x2

−√
R2−x2 dy

∫ 2R

0

(
2πs

∫ R
s
2

dx
∫ √

R2−x2

−√
R2−x2 dy

)
ds

(11)

= 2s

R2
− s2

πR4

√
4R2 − s2 − 4s

πR2
sin−1(s/2R). (12)

Equation (12) is identical to the results obtained in [9, 10] by other means.
The conclusion that emerges from this formalism is that the probability density of finding

two random points separated by a random vector �s in a circle of uniform density can be
derived by simply calculating the overlap region of that circle with an identical circle obtained
by shifting the centre from the origin to �s. In the following discussion, we show that this result
generalizes to higher dimensions and provides a simple way of calculating Pn(s) for n � 3.

For a given �s sampled from a uniform sphere, we select the positive ẑ direction and study
the distribution of the random vectors �s in this direction. It then follows that the probability
density of finding sẑ is proportional to∫ s

2

s−R

dz

∫ √
R2−(z−s)2

−
√

R2−(z−s)2

dx

∫ √
R2−(z−s)2−x2

−
√

R2−(z−s)2−x2

dy +
∫ R

s
2

dz

∫ √
R2−z2

−√
R2−z2

dx

∫ √
R2−z2−x2

−√
R2−z2−x2

dy. (13)

In a three-dimensional space, we note that the direction of the random vector �s can have the
following range: 0 � θ � π and 0 � φ � 2π . From the previous discussion, we thus arrive
at the following expression for a sphere with a uniform density distribution:

P3(s) =
4πs2

(∫ R
s
2

dz
∫ √

R2−z2

−√
R2−z2 dx

∫ √
R2−z2−x2

−√
R2−z2−x2 dy

)
∫ 2R

0 4πs2
(∫ R

s
2

dz
∫ √

R2−z2

−√
R2−z2 dx

∫ √
R2−z2−x2

−√
R2−z2−x2 dy

)
ds

(14)

= 3
s2

R3
− 9

4

s3

R4
+

3

16

s5

R6
. (15)

The result in equation (15) agrees exactly with the expression obtained previously in [6–11].
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Figure 3. Plots of P1(s), P2(s), P3(s) and P4(s) for a uniform density distribution. Note that in
all cases

∫ 2R

0 Pn(s) ds = 1.

The present formalism can be readily generalized to express Pn(s) for a sphere of uniform
density in n-dimensions as

Pn(s) =
sn−1

∫ R

s/2 dxn

∫ √
R2−x2

n

−
√

R2−x2
n

dx1 · · · ∫
√

R2−x2
n−···−x2

n−2

−
√

R2−x2
n−···−x2

n−2

dxn−1

∫ 2R

0

(
sn−1

∫ R

s/2 dxn

∫ √
R2−x2

n

−
√

R2−x2
n

dx1 · · · ∫
√

R2−x2
n−···−x2

n−2

−
√

R2−x2
n−···−x2

n−2

dxn−1

)
ds

. (16)

We find that if n is an even number, then

Pn(s) = n × sn−1

Rn


 2

π
cos−1(s/2R) − s

π

n
2∑

k=1

(n − 2k)!!

(n − 2k + 1)!!
(R2 − s2/4)

n−2k+1
2 R2k−2−n




(17)

where 0! = 0!! = 1. If n is an odd number, then

Pn(s) = n × sn−1

Rn

n!!

(n − 1)!!

n−1
2∑

k=0

(−1)k

2k + 1

(
n−1

2

)
!

k!
(

n−1
2 − k

)
!
[1 − (s/2R)2k+1]. (18)

The functional forms of equation (16) for n = 1, 2, 3 and 4 are shown in figure 3.
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The cumulative distribution function (CDF) [20] for Pn(s) is given by

Dn(x) =
∫ x

0
Pn(s) ds

= xn

Rn
− Bα

(
1
2 , n

2 + 1
2

)
B

(
1
2 , n

2 + 1
2

) xn

Rn
+ 2n

Bα

(
n
2 + 1

2 , n
2 + 1

2

)
B

(
1
2 , n

2 + 1
2

) (19)

where 0 � x � 2R, α = x2/4R2 and Bα is the incomplete beta function.
We summarize three important representations for the probability density function Pn(s)

for a spherical n-ball of radius R with a uniform density distribution as follows:

1. Integral representation:

Pn(s) =
sn−1

∫ R
s
2
(R2 − x2)

n−1
2 dx

1
2n

B
(

n
2 + 1

2 , 1
2

)
R2n

. (20)

2. Generating function representation:

Pn(s) =
sn−1 1

n!

(
∂
∂h

)n

h=0
1√

1−h2

[
sin−1 h − sin−1

(
2h−√

4−s2

2−h
√

4−s2

)]
1

2n
B

(
n
2 + 1

2 , 1
2

) (21)

where |h| < 1 and R = 1. We note that one can obtain a number of identities and
recursion relations for Pn(s) from the generating function representation in equation (21).

3. Hypergeometric function representation:

Pn(s) = 2n

B
(

n
2 + 1

2 , 1
2

) [
2F1(a, b, c, α)R − s

2
2F1(a, b, c, β)

] sn−1

Rn+1
(22)

where a = 1/2, b = 1/2 − n/2, c = 3/2, α = 1, β = s2/4R2 and 2F1(· · ·) is the
hypergeometric function [19]. Note that we can obtain the orthogonality relations for
Pn(s) from the hypergeometric function representation as shown in equation (22).

In [5] additional identities and recursion relations for Pn(s) are discussed in greater detail.

3. Spherically symmetric density distributions

In this section we extend the previous results to the case of a circle with a variable (but
spherically symmetric) density characterized by a density function ρ(r). Following the
derivation presented in the previous section, we note that for any random vector �s = sx̂ if
the second random point �r2 carries the density information ρ(x, y), then the first random
point �r1 should have the density information ρ(x − s, y). It then follows that P2(s) can be
expressed as

P2(s) =
s
∫ R

s
2

dx
∫ √

R2−x2

−√
R2−x2 ρ(x − s, y) × ρ(x, y) dy

∫ 2R

0

(
s
∫ R

s
2

dx
∫ √

R2−x2

−√
R2−x2 ρ(x − s, y) × ρ(x, y) dy

)
ds

. (23)

A general formula for Pn(s) for an n-dimensional spherical ball of radius Rhaving a spherically
symmetric density can be derived, and we find that

Pn(s) =
sn−1

∫ R
s
2

dxn

∫ √
R2−x2

n

−
√

R2−x2
n

dx1 · · · ∫
√

R2−x2
n−x2

1−···−x2
n−1

−
√

R2−x2
n−x2

1 −···−x2
n−1

ρ1 × ρ2 dxn−1

∫ 2R

0

(
sn−1

∫ R
s
2

dxn

∫ √
R2−x2

n

−
√

R2−x2
n

dx1 · · · ∫
√

R2−x2
n−x2

1−···−x2
n−1

−
√

R2−x2
n−x2

1 −···−x2
n−1

ρ1 × ρ2 dxn−1

)
ds

(24)
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where
ρ1 = ρ(x1, x2, . . . , xn − s)

ρ2 = ρ(x1, x2, . . . , xn).
(25)

Some analytical results for a sphere with various spherically symmetric density distributions
can be found in [5].

As an application of equation (24) we consider the case of an n-dimensional spherical
space of radius R → ∞ with a Gaussian density given by

ρn(r) = N

(2π)
n
2 σn

e− 1
2

r2

σ2 (26)

where

N = lim
R→∞

n
π

n
2



(

n
2 + 1

)
∫ R

0
ρn(r)r

n−1 dr. (27)

In equation (27) r is measured from the centre, and the integral is over all space. The PDF for
an n-dimensional spherical Gaussian space can then be obtained as

Pn(s) = sn−1 e− s2

4σ2

2n−1

(

n
2

)
σn

. (28)

Finally, we note that the maximum probability density, denoted by smax, occurs at

smax =
√

2(n − 1)σ. (29)

4. Arbitrary density distributions

We consider in this section the probability density functions for a spherical n-ball having an
arbitrary density characterized by a density function ρ. We begin with a circle and use the
conventional notation for polar coordinates: x = r cos φ and y = r sin φ. In a two-dimensional
space, the random vector �s can be characterized by an angle φ in the range 0 � φ � 2π .
Associate each random unit vector ŝ(φ) with a rotation operator R such that

|x̂〉 = R|ŝ(φ)〉. (30)

To ensure that the product of ρ(�r1) and ρ(�r2) maintains the correct density information, we
use a 2 × 2 matrix

R2×2(φ) =
[

cos φ −sin φ

sin φ cos φ

]
(31)

to characterize this particular operator R such that

ρ(x, y) −→ ρ(cos φ x − sin φ y, sin φ x + cos φ y). (32)

Note that R2×2(φ) is an orthogonal matrix which satisfies R−1
2×2(φ) = RT

2×2(φ) and its
determinant is +1, where T denotes the transpose.

We can then express P2(s), for a circle with an arbitrary density distribution, as

P2(s) =
s
∫ 2π

0 dφ
∫ R

s/2 dx
∫ √

R2−x2

−√
R2−x2 ρ(x ′, y ′) × ρ(x ′′, y ′′) dy∫ 2R

0

(
s
∫ 2π

0 dφ
∫ R

s/2 dx
∫ √

R2−x2

−√
R2−x2 ρ(x ′, y ′) × ρ(x ′′, y ′′) dy

)
ds

(33)

where

ρ(x ′, y ′) = ρ(cos φ(x − s) − sin φy, sin φ(x − s) + cos φy)

ρ(x ′′, y ′′) = ρ(cos φx − sin φy, sin φx + cos φy).
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Figure 4. Plot of P2(s) as a function of s for the case R = 1 and ρ(x, y) ∝ x4y4.

Figure 4 exhibits P2(s) when R = 1 and illustrates the agreement between the Monte Carlo
simulation and the analytical result when ρ(x, y) ∝ x4y4.

The preceding discussion can be generalized to the case of a spherical n-ball with an
arbitrary density. We define the following n-dimensional spherical coordinates [21] as

x1 = r sin θn−2 sin θn−3 · · · sin θ2 sin θ1 cos φ

x2 = r sin θn−2 sin θn−3 · · · sin θ2 sin θ1 sin φ

...

xi = r sin θn−2 sin θn−3 · · · sin θi−1 cos θi−2

...

xn−1 = r sin θn−2 cos θn−3

xn = r cos θn−2.

(34)

where θi ∈ [0, π] and φ ∈ [0, 2π]. We associate each random unit vector ŝ(θ1, . . . , φ) with a
rotation operator R such that

|x̂n〉 = R|ŝ(θ1, . . . , φ)〉. (35)

The n × n matrix representation for the rotation operator R in equation (35) can be expressed
as

Rn×n(θn−2, . . . , θ1, φ) = Rn×n(φ) × Rn×n(θ1) × · · · × Rn×n(θn−2) (36)
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where n � 3. The various matrices on the right-hand side of equation (36) are defined as
follows:

1. Rn×n(φ): The matrix elements are a11 = cos φ, a12 = −sin φ, a21 = sin φ, a22 = cos φ;
for i ∈ [1, 2] and j ∈ [3, n] aij = 0; for i ∈ [3, n] and i ∈ [1, 2] aij = 0; for i ∈ [3, n]
and j ∈ [3, n] aij = δij .

2. Rn×n(θ1): The matrix elements are a11 = cos θ1, a12 = 0, a13 = sin θ1, a21 = 0, a22 = 1,
a23 = 0, a31 = −sin θ1, a32 = 0, a33 = cos θ1; for i ∈ [1, 3] and j ∈ [4, n] aij = 0; for
i ∈ [4, n] and j ∈ [1, 3] aij = 0; for i ∈ [4, n] and j ∈ [4, n] aij = δij .

3. Rn×n(θk) and k ∈ [2, n− 3]: The matrix elements are ak+1,k+1 = cos θk, ak+1,k+2 = sin θk,
ak+2,k+1 = −sin θk, ak+2,k+2 = cos θk; for i ∈ [1, k] and j ∈ [1, k] aij = δij ; for
i ∈ [k + 3, n] and j ∈ [k + 3, n] aij = δij ; for i ∈ [1, k] and j ∈ [k + 1, n] aij = 0;
for i ∈ [k + 1, n] and j ∈ [1, k] aij = 0; for i ∈ [k + 1, k + 2] and j ∈ [k + 3, n] aij = 0;
for i ∈ [k + 3, n] and j ∈ [k + 1, k + 2] aij = 0.

4. Rn×n(θn−2): The matrix elements are an−1,n−1 = cos θn−2, an−1,n = sin θn−2, an,n−1 =
−sin θn−2, an,n = cos θn−2; for i ∈ [1, n−2] and j ∈ [1, n−2] aij = δij ; for i ∈ [1, n−2]
and j ∈ [n − 1, n] aij = 0, for i ∈ [n − 1, n] and j ∈ [1, n − 2] aij = 0.

Note that all the matrices in equation (36) are orthogonal and their determinants are +1. The
matrix elements for Rn×n(θn−2, . . . , θ1, φ) can be summarized as follows:

1. The matrix elements for the first column are a11 = cos θ1 cos φ, a21 = cos θ1 sin φ,
a31 = −sin θ1, and for i ∈ [4, n] ai1 = 0.

2. The matrix elements for the second column are a12 = −sin φ, a22 = cos φ, and for
i ∈ [3, n] ai2 = 0.

3. The matrix elements for the jth column where j ∈ [3, n − 1] are aj+1,j = −sin θj−1; for
i ∈ [j + 2, n] aij = 0, and for i ∈ [1, j ] aij = cos θj−1 × xi , where xi = r̂ × x̂i and xi is
the ith Cartesian coordinate component for a unit vector r̂ in j -dimensions. For example,

a14 = cos θ3 sin θ2 sin θ1 cos φ

a24 = cos θ3 sin θ2 sin θ1 sin φ

a34 = cos θ3 sin θ2 cos θ1

a44 = cos θ3 cos θ2.

4. The matrix elements for the nth column are for i ∈ [1, n] ain = xi , where xi = r̂ × x̂i and
xi is the ith Cartesian coordinate component for a unit vector r̂ in n-dimensions.

Additionally, it is convenient to define the following transforms:

x ′
i =

n∑
j=1

aij (xj − δjns) (37)

x ′′
i =

n∑
j=1

aijxj (38)

where aij are the matrix elements for Rn×n(θn−2, . . . , θ1, φ) defined in equation (36). The
master equation for Pn(s) for a spherical n-ball with an arbitrary density characterized by a
density function ρ(x) = ρ(x1, x2, . . . , xn) can then be formulated as

Pn(s) = sn−1 × Fn(x, θ)∫ 2R

0 [sn−1 × Fn(x, θ)] ds
(39)
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where

Fn(x, θ) =
∫ π

0
sinn−2 θn−2 dθn−2

∫ π

0
sinn−3 θn−3 dθn−3 · · ·

×
∫ π

0
sin θ1 dθ1

∫ 2π

0
dφ

∫ R

s/2
dxn

∫ √
R2−x2

n

−
√

R2−x2
n

dx1 · · ·

×
∫ √

R2−x2
n−···−x2

n−2

−
√

R2−x2
n−···−x2

n−2

ρ(x′) × ρ(x′′) dxn−1

and

ρ(x′) = ρ(x ′
1, x

′
2, . . . , x

′
n) ρ(x′′) = ρ(x ′′

1 , x ′′
2 , . . . , x ′′

n)

where x ′
i and x ′′

i are defined in equations (37) and (38).
Finally, we note that the formalism presented in this paper can be applied to an n-

dimensional sphere (i.e. the boundary of a spherical n-ball) with an arbitrary surface density.
Two random distance distributions including Euclidean distance and geodesic distance are
discussed in [5, 22]. Specifically we will demonstrate the analytical solutions to Thomson’s
problem of finding the minimum energy configuration of unit charges on a spherical surface
[23–31].

5. Applications

5.1. mth moment of the distance

In some applications the mth moment of the distance, rather than the distance itself, is of
interest. As an example, for a collection of nucleons interacting via simple harmonic oscillator
potentials, 〈s2〉 may be of interest rather than 〈s〉 itself. We then calculate the mth moment
〈sm〉 for the case of a spherical n-ball of uniform density, where

〈sm〉 =
∫ 2R

0
smPn(s) ds. (40)

Using equation (20), the mth moment 〈sm〉 has the general form

〈sm〉 = 2n+m
( n

n + m

) B
(

n
2 + 1

2 , n
2 + 1

2 + m
2

)
B

(
n
2 + 1

2 , 1
2

) Rm (41)

where B(p, q) is the beta function and m � −(n − 1).
Additionally, 〈sm〉 can be evaluated for a spherical space having a Gaussian density

distribution where ρ ∝ e−r2/2σ 2
. From equation (28), we find

〈sm〉 = lim
R→∞

∫ 2R

0
smPn(s) ds = (2σ)m



(

n+m
2

)



(
n
2

) . (42)

In some applications (such as in nuclear physics) involving low-energy interactions among
nucleons the lower limit (zero) should be replaced by the hard-core radius rc

∼= 0.5 ×
10−13 cm [32]. In such cases the expressions for Pn(s) and 〈sm〉 can be expressed as follows:

Pn(s) =
sn−1

∫ R
s
2
(R2 − x2)

n−1
2 dx

C(2R, 0, n) − C(rc, 0, n)
(43)

and

〈sm〉 =
∫ 2R

rc

smPn(s) ds = H(R, rc,m, n)

H(R, rc, 0, n)
(44)
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where

C(a,m, n) =
∫ a

0
sm+n−1 ds

∫ R

s/2
(R2 − x2)(n−1)/2 dx

and

H(R, rc,m, n) = (2R)n+m

n + m

[
B

(
n

2
+

1

2
,
n

2
+

1

2
+

m

2

)
− Bx

(
n

2
+

1

2
,
n

2
+

1

2
+

m

2

)]

− rn+m
c

n + m

[
B

(
1

2
,
n

2
+

1

2

)
− Bx

(
1

2
,
n

2
+

1

2

)]
(45)

with x = r2
c

/
4R2 and m an integer. We note that equations (43) and (44) are the first known

analytical results for Pn(s) and 〈sm〉 to incorporate the hard-core radius rc.

5.2. Neutron star models

Another application of current interest is the self-energy of a neutron star arising from the
exchange of νν̄ pairs [33–35]. Here we evaluate the probability density functions in three
dimensions for neutron stars with a multiple-shell density distribution, which is what is
typically assumed in neutron star models [36, 37]. For illustrative purposes, we discuss a
spherically symmetric model with two spherical shells, each of uniform density, where for
simplicity we assume shells of equal thickness. Some other multiple-shell models and their
n-dimensional probability density functions can be found in [5].

For a two-shell model with a uniform density in each shell, define ρ = ρ1 for 0 � r � R/2
and ρ = ρ2 for R/2 � r � R, where ρ1 and ρ2 are arbitrary constants and r is measured from
the centre of the neutron star. Using the preceding formalism we can show that P3(s) has four
different functional forms specified by four regions:

1. 0 � s � 1
2R:

P3(s) = 24
(
ρ2

1 + 7ρ2
2

)
s2

(ρ1 + 7ρ2)2R3
− 36

(
ρ2

1 − 2ρ1ρ2 + 5ρ2
2

)
s3

(ρ1 + 7ρ2)2R4
+

12
(
ρ2

1 − 2ρ1ρ2 + 2ρ2
2

)
s5

(ρ1 + 7ρ2)2R6
(46)

2. 1
2R � s � R:

P3(s) = −81(ρ1 − ρ2)ρ2s

2(ρ1 + 7ρ2)2R2
+

24ρ1s
2

(ρ1 + 7ρ2)R3
− 36ρ1(ρ1 + 3ρ2)s

3

(ρ1 + 7ρ2)2R4
+

12ρ2
1s

5

(ρ1 + 7ρ2)2R6

(47)

3. R � s � 3
2R:

P3(s) = −81(ρ1 − ρ2)ρ2s

2(ρ1 + 7ρ2)2R2
+

24(9ρ1 − ρ2)ρ2s
2

(ρ1 + 7ρ2)2R3
− 36(5ρ1 − ρ2)ρ2s

3

(ρ1 + 7ρ2)2R4

+
12(2ρ1 − ρ2)ρ2s

5

(ρ1 + 7ρ2)2R6
(48)

4. 3
2R � s � 2R:

P3(s) = 192ρ2
2s

2

(ρ1 + 7ρ2)2R3
− 144ρ2

2s
3

(ρ1 + 7ρ2)2R4
+

12ρ2
2s

5

(ρ1 + 7ρ2)2R6
. (49)

We observe that the probability density functions defined in adjacent regions are continuous
across the boundaries separating the regions.
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5.3. GRIP: a new computational test for randomness

Another interesting application of the present work is as a new test of random number
generators used in a variety of stochastic simulations. Our statistical method follows by
applying the probability density functions for the random distance distribution to evaluate the
expectation values of the random inner product �r12 · �r23, where �r12 = �r2 − �r1, �r23 = �r3 − �r2,
and �r1, �r2 and �r3 are three random points independently sampled from a spherical n-ball. The
quantity 〈�r12 · �r23〉n is one of the geometric probability constants as discussed in [5]. It follows
from the preceding formalism that for a spherical n-ball of radius R with a uniform density
distribution,

〈�r12 · �r23〉n = − n

n + 2
R2. (50)

Note that

lim
n→∞〈�r12 · �r23〉n = −R2. (51)

In a spherical Gaussian space where ρ ∝ e−r2/2σ 2
and R → ∞,

〈�r12 · �r23〉n = −nσ 2. (52)

We refer to these tests as GRIP (geometric random inner product).
We now apply the GRIP test to check three popular random number generators frequently

used in Monte Carlo simulations [38–42]. The random number generators tested are

1. RAN0 [39] which is a linear congruential generator and uses the following algorithm:

In = 16 807In−1 mod m = 231 − 1. (53)

2. R31 [40] which uses the generalized feedback shift register (GFSR) method

xn = xn−p ⊕ xn−q (54)

where p = 31, q = 3 and ⊕ is the bitwise exclusive OR operator.
3. NWS [41, 42] which uses the nested Weyl sequence

Yn = {n{nα}} (55)

where {y} is the fractional part of y and α is an irrational number.

The results are shown in table 1. We have checked several initialization methods and the
results are not affected. We note that the NWS generator using the nested Weyl sequence
method fails to pass our randomness tests in all dimensions selected. Hence caution should
be exercised in using this particular random number generator for Monte Carlo simulations,
especially in molecular dynamics simulations. More numerical results for a variety of random
number generators including the PSLQ algorithm using the binary digits of π [43], and other
newly proposed computational methods, will be discussed in [44].

This series of geometric probability constants, 〈�r12 · �r23〉n, can be added to the family
of various computational tests for random number generators [38]. They can then serve to
investigate the quality of random number generators for questions of randomness, especially
in higher dimensions (n > 3) where few results are currently available. The possibility that
some random number generators such as NWS pass other tests but not ours, may indicate that
the properties of random points in a sphere provide a more sensitive test of randomness than
is otherwise available. These and other important issues will be discussed in greater detail
in [44].
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Table 1. Comparison of random number generators (RNG) with the exact results derived in this
paper for 〈�r12 · �r23〉n. The number of simulation samples in each case is N = 106. We note that
the NWS generator fails to pass the new randomness test in all dimensions that we selected. See
the text for further details.

RNG n = 3 Result n = 5 Result n = 10 Result

RAN0 −0.600 37 ± 0.000 65 Pass −0.714 83 ± 0.000 59 Pass −0.833 10 ± 0.000 47 Pass
R31 −0.600 28 ± 0.000 66 Pass −0.714 68 ± 0.000 58 Pass −0.832 29 ± 0.000 48 Pass
NWS −0.641 19 ± 0.000 71 Fail −0.754 27 ± 0.000 57 Fail −0.850 16 ± 0.000 49 Fail

Exact −0.600 00 −0.714 29 −0.833 33

6. Conclusions

A formalism has been presented in this paper for evaluating the analytical probability density
function of the random distance distribution for a spherical n-ball with an arbitrary density
distribution. We show that the random distance distribution technique can reduce otherwise
difficult calculations from the complexity of 2n-dimensional integrals to just a one-dimensional
integral, even when the nucleon–nucleon hard-core radius rc is included. Our formalism has
applications to the currently active area of research surrounding string-inspired theories of
higher dimensional physics, and has numerous potential applications to other fields as well.
Specifically the results presented here are of interest in the context of recent work on the
modifications to the Newtonian inverse-square law arising from the existence of extra spatial
dimensions [45]. We have also presented a new computational method to test random number
generators for studying random sequences used in Monte Carlo simulations.
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